ClickCease

The ultimate VR glossary of words, terms and acronyms

Ultimate VR Glossary Words

Virtual reality (VR) is a booming new technology transforming how we work, play, and shop. But with the popularity of VR many new words, terms and acronyms fly around, making it hard to keep up. In this article, we’ll define virtual reality terms and acronyms used within the industry, helping you understand the basics of virtual reality and how to navigate this new landscape.

Additionally, this article will be updated when new terms are introduced and popularized.

General virtual reality words and terms

Virtual reality (VR)

The differences between the reality abbreviations are explained by how each achieves immersion.

Virtual reality (VR) is content contained within the view of the wearer. Crudely it is like having an interactive movie theater strapped in front of your eyes.

MR vs AR vs VR - VR Expert

Augmented reality (AR)

Augmented reality (AR) is computer-generated content layered on the real world, interacting with it in real-time. It is like having a screen within your sunglasses but with digital 3D objects on your physical table; think PokémonGO.

MR vs AR vs VR - VR Expert

Assisted reality (aR)

Assisted reality (aR) is the same as AR but without interactivity with the real world. It is like a static screen plastered on your sunglasses that can show you movies or phone notifications.

Mixed reality (MR)

Mixed reality (MR) is when AR is taken up a notch. MR merges the digital with the real. It is no longer enough to have a digital 3D lamp on your table; with MR you can turn the lamp on, illuminating your room, or change the design and color of the lamp.

MR vs AR vs VR - VR Expert

Extended reality (XR)

Extended reality (XR) is the umbrella term for all the reality-terms both now and in the future. It is for covering all in a neat single term or when enterprises combine one or more realities into unique solutions: like Phario with Varjo headsets.

Metaverse

The metaverse is also known as the embodied internet and is different from Web3.0. The metaverse is the blending of digital and online elements into our real world. In a way, the metaverse is virtual shared spaces that you enter using either virtual or augmented reality. Matthew Ball, a metaverse expert, describes the metaverse as “a massively scaled and interoperable network of real-time rendered 3D virtual worlds which can be experienced synchronously and persistently by an effectively unlimited number of users with an individual sense of presence and with continuity of data, such as identity, history, entitlements, objects, communications, and payments.”

Head Mounted Display (HMD)

Simply, a virtual reality headset and the term HMD, or head-mounted display are the same. The term itself comes from how it worked in the past when VR was just strapping a contained display in front of your eyes.

Location-based VR

Location-based virtual reality is used when VR HMDs (what you just learned) are taken to different locations to be used. An example is when enterprises take VR headsets to their conference stands for presentations.

Stationary VR

Stationary VR is a virtual reality station set up to be used within. This category mirrors how the tracking works: see outside-in tracking below. Generally, stationary VR is used by consumers when gaming in their living room or by enterprises developing and designing within a designated VR workstation.

Cinematic VR

Cinematic VR is also known as 360-degree video and refers to 360-degree video cameras like GoPro MAX. Cinematic VR is video content similar to a movie but experienced as virtual reality.

Computer-generated VR (CG VR)

CG VR is virtual reality content and experiences created on a computer and rendered as 3D objects: think of video games.

Tracking terms

Degrees of Freedom (DoF)

6DOF vs 3DOF - VR Terms - VR Expert

Degrees of Freedom refers to how mobile you can be when experiencing virtual reality and if your movements are tracked and simulated in your experience.

3 DoF (Rotational axes)

3 DoF are the rotational axes that are tracked, namely your head movements of head pivots from side to side, horizontal swiveling (shaking your head signing “no”), and pitching your head up and down (signing “yes”).

In other words, 3 DoF means you must be stationary in one place while only your head movements are tracked.

6 DoF (Transitional axes)

6 Degrees of Freedom adds three more axes for your movements to be tracked and simulated within the virtual world. These are strafing, moving in a straight line left or right; surging, moving in a straight line front or back; and elevating, moving up or down.

In other words, 6 DoF means you have the freedom to move around.

Inside-out and Outside-in

What inside-out and outside-in signifies is where the tracking comes from and how free you are when wearing a VR headset. 

Inside-out tracking

Inside-out tracking means that the tracking originates from the headset. Naturally, this means that you can be in any environment, and the tracking will still function.

Outside-in tracking

Oppositely, outside-in tracking means that external tracking stations (or bases) are placed around a designated tracking area, i.e., tracking only works within this zone.

Standalone and tethered

Standalone VR

A standalone VR HMD refers to its computing within the headset itself. Again, this means more freedom to experience virtual reality wherever you are. 

VR Expert - Pico Neo 3 Link Product Image

Tethered VR (PC VR)

Oppositely, a tethered VR headset means that the HMD only works if connected to a computer or gaming console. This limits freedom but usually comes with better processing.

Eye and hand tracking

Eye tracking is when embedded cameras are placed inside the VR headset to track the pupils of your eyes, keeping track of where you are looking. Recently we have seen more enterprises realize the valuable use cases of eye tracking

Similarly, hand tracking is when a headset, either inside-out or outside-in tracks your hands’ position, depth, pace, and orientation. Generally, hand tracking increases the immersion of the virtual reality experience.

Display and visual experience

Foveated rendering

Foveated rendering is when a headset adapts the screen resolution based on where the wearer is looking through eye tracking. In other words, the headset to conserve processing will blur the edges of your vision without you noticing.

Field of View (FoV)

FoV, or field of view, refers to how wide the screen is within the virtual reality headset. This can be measured in horizontal and vertical degrees or combined into diagonal degrees. Similarly, there are differences between the visible FoV and the rendered FoV: the visible is what you can see, and the rendered is the totality of the screen, including parts that cover the screen.

Interpupillary distance (IPD)

The distance between your two pupils is called interpupillary distance, or IPD. Virtual reality uses this distance – measured in millimeters – to customize the different IPD distances of people to improve the visual experience. Think of when you dial in the width on binoculars before you can see anything; VR works the same way.

Video passthrough

Some virtual reality HMDs feature either one or more cameras on the front of the headset’s visor. These cameras are usually used as tracking sensors but can also be activated to show on the internal VR screen, enabling you to see the outside world from inside the headset. That is video passthrough.

Display engines

The simplest difference between each display type is the source of its backlighting. Essentially, a display works by having a coating of pixels that are alit by a light source.

Liquid Crystal Display (LCD)

LCDs produce an image by obscuring the light produced from behind them. In other words, based on this obfuscation of the backlight, an image is made. LCD engines are the more cost-effective and thereby popular displays to use in virtual reality.

Light Emitting Diode (LED)

An LED display is an LCD with the backlight coming from a panel of light-emitting diodes (LEDs). In other words, it is just an LCD with unique backlighting. 

Mini- and microLED

MiniLED is the same as microLED. The only difference is that Samsung pioneered and pushed the microLED term.

MicroLED is when you combine the pixels into their own light source: the light emitting diodes. It is minuscule LEDs acting as display and light source slimming the display and weight.

OLED (Organic Light-Emitting Diodes)

OLED displays are light-emitting diodes but organic, meaning dynamic. Effectively, each organic diode is its own pixel and light source, slimming the display thickness and weight.

LCD vs OLEd Display for VR - VR Expert

AMOLED (Active-Matrix Organic Light-Emitting Diodes)

The display type that premium virtual reality headsets use is active-matrix organic light-emitting diodes or AMOLED displays. The reason is that AMOLED compresses more display parts (or layers) tighter together. This means AMOLED can change and turn on and off faster than OLED displays creating a smoother visual experience.

Refresh rate

Most experts believe the human eye can perceive images between 30 to 60 frames per second, whereas some posit we can notice flickering up to 90 frames per second. This is important because VR encapsulates a screen closely in front of a wearer’s eyes, so a smooth visual experience is pivotal. In virtual reality, the higher the refresh rate, the better, alleviating motion sickness and increasing immersion.

Also, OLED and AMOLED displays produce the highest refresh rates, as the light source and pixel are together in one element.

Lenses

Quest 2 Pro Leak - VR Expert -1

Fresnel

The fresnel lens technology is the oldest and most widely used within virtual reality. Fresnel works like a lighthouse in that concentric lens circles beam and enhance a screen’s light into the wearer’s eyes.

Pancake

The pancake design works by bouncing and redirecting the screen’s light between multiple lenses layered like a stack of pancakes. This slims the VR headset enabling more stylish designs.

Aspherical

Aspherical lenses work the same as cameras. The aspherical lens achieves the same enhancement and beam effect as the fresnel but does it through a smooth dome. This means that light distortions such as God Ray’s (visible light beams) are avoided, and a better visual experience is delivered. Virtual reality headsets using the aspherical lens are Varjo VR-3 and Varjo Aero.

Discussion

Leave a Reply

Close Menu
You are now on the VR Expert Business site in the International region
×

Basket